//Logo Image
作者:蕭雅丹(2007-09-25);推薦:許博爾、徐業良(2009-05-05)

五、六碳糖生質酒精發酵酵株專利檢索與分析

本文針對五、六碳糖生質酒精發酵酵株相關技術進行專利分析,藉以瞭解現有產品的專利狀況以及技術特點,並利用專利地圖(patent map)的製作,將專利資訊做最有效之組織分析,以了解整體產業環境之發展。同時針對現有技術其開發動向、運用手法與其達成效進行交叉分析,以期在舊有技術領域中看出可開發的新區域,藉以擬定技術研發與創新設計之切入點,建立有別於現有產品之市場與技術區隔。

1.     五、六碳糖生質酒精發酵酵株專利檢索策略

本專利檢索的地區定為美國地區之專利資料。重視全球市場的企業,在規劃其專利佈局時,皆會投入技術較為先進、市場需求性高的美國地區,因此美國專利資料庫收納全球最重要、完整的專利資料,藉由此區專利資料的檢索與研究,可使本計畫之專利分析成果同時掌握廣度與深度、即時性、與發展性。

在五、六碳糖生質酒精發酵酵株的技術領域中,“fermentation”“ferment”“pentose””xylose”等詞彙為描繪五、六碳糖生質酒精發酵酵株時最常使用的英文名稱,因此本研究將以這三組關鍵字及其他相關變化詞,在專利摘要(Abstract)與專利申請範圍(Claim)中檢索,檢索日期至2007731日止。由於各國專利權人所申請之專利多在美國有對應之專利,因此初步檢索範圍限制在USPTO中已公告的專利,之後再依據其國際專利技術分類碼(IPC)與美國專利技術分類碼(UPC)將個別核心技術(如含氧有機化合物備製等)與各種類型的發酵酵株進行有效分類。表1為五、六碳糖生質酒精發酵酵株專利檢索背景設定。

1. 五、六碳糖生質酒精發酵酵株美國專利檢索背景設定

搜尋公司

不限

搜尋地區

美國

搜尋年份

不限

搜尋欄位

專利摘要(Abstract)、專利範圍(Claims)

搜尋語言

英文

資料庫名稱

USPTO專利資料庫(主),Delphion專利資料庫(輔)

關鍵字

“ferments” , “fermentation”, “pentose”, “xylose”

檢索語法

ICL/C12P7$ AND CCL/435$ AND

(TTL/(ferments OR fermentation) OR

ACLM/(ferments OR fermentation) OR

ABST/(ferments OR fermentation)) AND (xylose OR pentose)

利用USPTODelphion專利資料庫交互檢索,並經由人工逐篇篩選後得到五、六碳糖生質酒精發酵酵株技術之美國公告專利共計112件,後續分析皆以已確認之美國公告專利為專利分析範圍。以下即針對此112件五、六碳糖生質酒精發酵酵株技術之美國公告專利製作專利管理圖表。

所謂專利管理圖表即是初步專利書目資料的圖表陳列,其目的是能夠將所檢索出的專利作一簡單呈現,並提供爾後技術分析的初步參考。雖然管理圖表無法提供深一層的技術特徵,但是對於技術掌握與分佈可提供某種程度的了解。一般而言,管理圖表分析包括專利件數分析、生命週期曲線分析、競爭國家分析、競爭公司分析、國際專利分類(IPC)分析與美國專利分類(UPC)分析等,將於以下各節分別討論。

2.     五、六碳糖生質酒精發酵酵株專利件數分析

1為五、六碳糖生質酒精發酵酵株技術歷年專利件數分佈,其中橫軸為申請日與公告日之時間軸,縱軸為專利件數。圖中藍色線代表以專利申請日分析,藉由申請日作分析,可以瞭解技術的萌芽時間;暗紅色線代表以專利公開日作分析,藉由公開日作分析可以得知最新的發展現況。

1. 五、六碳糖生質酒精發酵酵株技術歷年專利件數

五、六碳糖生質酒精發酵酵株技術最早一篇專利申請於1975年,初步分析其書目資料,其專利名稱為從多種纖維材料中的酵素製成酒精(Manufacture of alcohol from cellulosic materials using plural ferments),專利權人為日本的Bio Research Center Company Limited。檢視此篇專利可以發現,其技術內容約略說明利用多種的纖維酵素中的微生物在厭氧的環境條件下醣解成葡萄糖進而製成酒精。從申請日與公告日的比對,其申請時間與核准公告時間有2~3年的差距。

 五、六碳糖生質酒精發酵酵株技術專利申請從1976年到1979年處於萌芽階段,而1980年到1985年間,專利發表件數相較於前四年有成長的趨勢,但是,此後的四年,件數銳減。由圖觀察可知,在過去的20年間,專利申請件數大約呈現兩個高峰,分別是1975年至1985年與1990年到2004年,而過去2~3年間的專利申請件數大幅下降,有待更進一步的了解。

 

2與表2說明專利技術生命週期圖之意義,比對專利件數與專利權人數,可以推論此專利技術是處於萌芽期、成長期、成熟期、或技術瓶頸期。圖3為五、六碳糖生質酒精發酵酵株技術生命週期圖(以三年為計算單位),比對圖3與圖2,五、六碳糖生質酒精發酵酵株技術截至目前為止處於成長的階段,其後續趨勢是否會繼續成長仍有待觀察。

2. 技術生命週期圖示

2. 技術生命週期圖簡介

階段

階段名稱

代表意義

第一階段

技術萌芽

廠商投入意願低,專利申請件數與專利權人數皆少

第二階段

技術成長

產業技術有突破或廠商對於市場價值有了認知,競相投入發展,專利申請量與專利權人數急遽上升

第三階段

技術成熟

廠商投資於研發的資源不再擴張,只剩少數繼續發展此類技術,且其他廠商進入此市場意願低,專利申請量與專利權人數成長逐漸減緩

第四、五階段

技術瓶頸

產業技術研發遇瓶頸難以突破或此類產業已過於成熟,專利申請量與專利權人數呈現負成長

3. 五、六碳糖生質酒精發酵酵株技術生命週期圖

3.     五、六碳糖生質酒精發酵酵株專利國家別分析

3為五、六碳糖生質酒精發酵酵株技術所屬國件數分析表。由表3可看出,投入五、六碳糖生質酒精發酵酵株技術發展並在美國獲得專利之國家共有21國,總專利件數111件,專利權人共79位,其中美國所獲得專利件數佔總專利件數之43.2%,是投入五、六碳糖生質酒精發酵酵株技術重要國家之ㄧ。

3. 專利所屬國件數分析表

所屬國

專利所屬國(中)

專利件數

專利權人數

件數百分比

US

美國

48

29

43.2

CA

加拿大

14

10

12.6

FI

芬蘭

10

5

9

IN

印度

8

6

7.2

WI

西印度群島

4

4

3.6

JP

日本

4

5

3.6

SE

瑞典

3

2

2.7

PA

巴拿馬

2

1

1.8

MA

摩洛哥

2

2

1.8

CO

哥倫比亞

2

1

1.8

AU

澳洲

2

1

1.8

NL

荷蘭

1

1

0.9

IL

以色列

1

1

0.9

GB2

英格蘭

1

1

0.9

GB

英國

1

1

0.9

DE

德國

1

1

0.9

BR

巴西

1

1

0.9

AR

阿根廷

1

1

0.9

AL

阿爾巴尼亞

1

1

0.9

Sas Van Gent

荷蘭(地名)

1

1

0.9

None

未知

2

2

1.8

UNGDA

未知

1

2

0.9

合計

111

79

100

4.     五、六碳糖生質酒精發酵酵株專利權人(公司)分析

專利權人分析係針對特定之競爭對手進行相關競爭指標分析,藉以深入了解競爭對手之動向與研發能力。

4.1 公司研發能力比較

設定研發能力加權參數,計算技術競爭公司之「相對研發能力值」,可觀察各競爭公司研發能力之強弱。表4為五、六碳糖生質酒精發酵酵株技術競爭公司相對研發能力值比較表,表中相對研發能力值是以相關之加權參數(專利件數加權參數為1.2、被引證分析加權參數為1.4、自我引證分析加權參數為0.9)來做計算。五、六碳糖生質酒精發酵酵株技術相對研發能力值最高第一名為University of Florida(佛羅里達大學),其相對研發能力值為100%,其次為Purdue Research Foundation普渡研究基金會,其相對研發能力值為47%,兩者間之差距53%

4. 重要競爭公司相對研發能力比較表

公司名稱

相對研發能力值百分比

University of Florida

100

Purdue Research Foundation

47

Unisearch Limited

33

The United States of America as represented by the United States

32

Midwest Research Institute

29

BioEnergy International, L.C.

28

Bio-Industries, Inc.

28

4.2 重要競爭公司研發能力詳細數據分析

5為利用專利件數、活動年期、發明人數、以及平均專利年齡等競爭指標,分析重要公司投入五、六碳糖生質酒精發酵酵株之技術發展狀況,藉以顯示競爭公司之投入資源及有效掌握競爭環境之重要資訊。以下先就各指標名詞簡單介紹:

(1)   活動年期

觀察各競爭公司在本專案技術內有專利產出之活動期,進而可得知各公司投入本技術領域之研發時間。

(2)   發明人

競爭公司投入本研究技術研發之發明人數分析,透過競爭公司在本專案技術研發人員投入之多寡,以評析該公司對本技術之企圖心與競爭潛力。

(3)   平均專利年齡

將各專利權年齡總和除以專利件數所得之值。平均專利年齡越短,表示該公司於本專案技術內享有較長期之技術獨占性優勢,反之亦然。為各國專利制度不盡相同,專利權期間也不相同。以美國專利權年限20年為例,若分析專案之平均專利年齡越短(例如3年),表示此專案之技術受專利權保護之時間將越長(還剩17年),享有較長期之技術獨占性優勢。

(4)   自我引證次數

本分析專案內公司引證自己公司之專利次數。

(5)   被其他人引證次數

本分析專案內公司之專利被其他公司引證之次數。

(6)   總引證次數

本分析專案內公司所擁有之專利自我引證次數加被其他人引證次數。

(7)   引證率

本分析專案內公司專利的總引證次數除以該公司專利件數的比值。引證率代表公司之每件專利產出被引用的次數,可用來衡量各競爭公司之專利產出品質。引證率越高的公司,表示該公司產出之專利平均被引用次數越多,顯示專利品質越高。一般評量先進公司之技術研發能力除可依專利件數多寡衡量外,引證率也是技術能力重要參考指標。利用引證率衡量公司之技術研發能力是屬於「質(quality)」的衡量指標,而專利產出件數則是「量(quantity)」的衡量指標。

(8)   技術獨立性

分析專案內公司引用自己公司專利的次數除以總引證次數之比值。技術獨立性表示公司技術研發內容與其他競爭公司的技術差異性。技術獨立性數值越高,表示該公司研發之技術獨特性較高(其研發路線較為獨立),同業間較少有公司追隨其技術研發,接近所謂的獨家技術;技術獨立性數值越低,表示該公司技術研發路線與其他競爭公司研發之技術內容相似程度較高,也較有技術侵權的可能性發生。

  5. 重要競爭公司相對研發能力詳細數據

公司名稱

專利件數

活動年期

發明人數

平均專利年齡

自我引證次數

被其他人引證次數

總引證次數

引證率

技術獨立性

University of Florida

5

5

12

15

1

34

35

7

0.029

Purdue Research Foundation

4

4

6

23

0

15

15

3.75

0

Unisearch Limited

2

1

2

26

0

11

11

5.5

0

The United States of America as represented by the United States

5

4

9

22

2

7

9

1.8

0.222

Midwest Research Institute

9

7

17

10

4

1

5

0.556

0.8

Bio-Energy International, L.C.

2

2

3

15

0

9

9

4.5

0

Bio-Industries, Inc.

1

1

1

32

0

10

10

10

0

註:引證率及技術獨立性之平均值分別為4.730.15

觀察投入五、六碳糖生質酒精發酵酵株技術之重要公司專利詳細資料表(表5),可得知在本專利技術相關領域中,投入五、六碳糖生質酒精發酵酵株技術專利的重要公司大多為學術研究單位,其中以佛羅里達大學專利之相關引證量最多(其中自我引證次數1次,被其他人引證次數34次),其總引證次數高達35次,較其他公司高出許多,顯示其研發出之技術可能為五、六碳糖生質酒精發酵酵株技術之核心技術。而專利總共產出5件,位居第二位、平均專利年齡15年,是屬於較早期的專利。

Midwest Research Institute專利產出9件,專利活動年期有7年,投入之發明人數為17位,平均專利年齡10年,屬於較中期的專利,由表可知,其技術獨立性高達0.8,顯示Midwest Research Institute之技術發展與其他公司有較為顯著的不同,侵權的可能性較低。

而其餘公司之專利平均年齡皆已超過20年,但由於部分引證率高於平均值的4.73,表示這些專利仍有其參考價值,但由於以屆保護期限,在此將不加以討論。

4.3 重要競爭公司歷年專利件數分析

4為上述五、六碳糖生質酒精發酵酵株重要競爭公司歷年專利件數分析,可顯示主要競爭公司歷年在此一研發領域之投入概況。由圖4可看出,五、六碳糖生質酒精發酵酵株專利產出件數最高的Midwest Research Institute,自1995年始有第一件專利產出,而近年陸續有相關專利產出,且發表的件數也相較於其他公司多,為近年五、六碳糖生質酒精發酵酵株技術領域專利產出的主要單位。

其他的公司如The United States of America as represented by the United States佛羅里達大學,在分別於19811991年各自發表了兩份專利之後,後續幾年也陸續有專利產出。Bio-Energy International, L.C.Unisearch LimitedPurdue Research Foundation在特定的幾年內產出專利文件之後就鮮少有新的產出。最早一篇專利所屬的專利權人為Bio-Industries, Inc.,是引證率最高之公司,表示此技術可能是後續研發所參考的重要技術之ㄧ。

4. 重要競爭公司歷年專利件數圖

5.     五、六碳糖生質酒精發酵酵株專利之IPC分析

5.1 IPC之意義

國際專利分類(International Patent Class, IPC),是世界智慧財產組織(World Intellectual Property Organization, WIPO)制訂的一種分類系統,可提供各國專利文獻統一分類之依據,其中包括了部(section)、主類(class)、次類(subclass)、主目(main group)、及次目(subgroup)五個階層,專利審查委員在閱讀專利說明書後,會依據該專利的技術特徵,賦予一個或多個的專利分類,以利分析者進行專利檢索。

IPC並非一成不變,而是會隨著技術演變進行調整,目前IPC最新版本是200611日公佈的第八版,共有8個部、120個主類、628個次類、與大約69,000個目,編排架構說明如下:

(1)   (section)

「部」為IPC之主要分類大項,其所呈現的是發明專利領域之知識體系,部的名稱可視為是對該部內容之廣泛指示,且每個名稱後面都有一個主要細部展開項目之摘要類目。目前IPC將整個專利發明的知識分為8部,以大寫字母AH分別表示之,如表6

6. 8部的類目

類目名稱

A

生活必需品

B

處理操作;運輸

C

化學;冶金

D

纖維;紙

E

固定構造物

F

機械工程;照明;加熱;武器;爆破

G

物理學

H

電學

(2)   主類(class)

「主類」係由各部之下再細分為類,主要是針對該領域之發明技術作出更明確的定義與意涵。類的記號是在部的記號後加上兩位數字作為代表(如“C12”),而每一類名稱標示該類所包含的內容。

(3)   次類(subclass)

每類之下均包含一個或多個次類,其所指示的範圍比類更為特定與詳細,亦即次類比類更接近其所指涉之發明技術內涵。次類之記號為類的記號後面再加上一個大寫字母(如“C12P”),其名稱則為能夠正確指示該次類內容的名詞。

(4)   (group)

次類之下則再細分為多個目,較次類更能顯示特定範圍的專利技術。目又分為主目與次目;其中主目是為定義在檢索目的上有用的技術主題範圍,因此其記號顯示格式為次類字母計號之後加上13位數字、斜線及數字00組成(如“C12P7/00”)。

(5)   次目(subgroup)

次目是主目下的細分類,其記號是在目的記號後面(斜線後面)加上至少兩位不等於00的數字(如“C12P7/02”)。由於IPC採用十進位分類,因此任何斜線後的第3位或後續數字應被視為是前行數字的十進位細分數字,如1/175介於1/171/18之間。次目之名稱,則是限定在主目的範圍之內,利於定義檢索的技術主題範圍,而名稱之前有顯示該層次位置的一個或數個圓點,在所有情形下,次目名稱必須以從屬並受限於其上主目之名稱的方式來解讀。

7為五、六碳糖生質酒精發酵酵株專利之IPC範例。每一個IPC均對應一個代表該分類的技術內容,IPC分析可對專利技術類別進行分析,包括IPC專利分類分析、IPC專利技術歷年件數分析、與競爭公司分析等。利用IPC分析可以幫助分析者找出技術的主要領域和未開發領域,以作為研發方向的參考。

7. 五、六碳糖生質酒精發酵酵株專利IPC範例

C12P7/02

說明

部之記號、名稱

C:化學;冶金;組合技術

類之記號、名稱

12:生物化學;啤酒;烈性酒;葡萄酒;醋;微生物學;酶學;突變或遺傳工程

次類之記號、名稱

P:發酵或使用酶之方法以合成所要求的化合物或組合物或由外消旋混合物內分離光學異構物

目之記號、名稱

7/00:含氧有機化合物之製備

一點次目之記號、名稱

02:含有羥基

C12P7/02應解讀成「化學方法發酵或使用酶之方法製備成含有羥基的有機化合物」

5.2 五、六碳糖生質酒精發酵酵株專利之IPC專利分類分析

8列出五、六碳糖生質酒精發酵酵株專利四階IPC分析前三名的技術分類及內容。每件專利大多並非只有一個IPC四階分類號,因此表8中之專利件次是代表共有多少專利件次屬於該分類,例如US7,074,063號專利IPC分類為C12P 7/06 C12P 7/14 C12P 7/62 ,因此共有3專利件次屬於C12P7/00分類。

由表8中可得知C12P7C12N9、與C12N15此三項分類為五、六碳糖生質酒精發酵酵株專利的重點領域,其中又以C12P7「含氧有機化合物之製備」專利件數明顯較多。

8. 五、六碳糖生質酒精發酵酵株專利四階IPC分析前三名的技術分類及內容

IPC分類

技術分類意義

專利件次

C12P7

含氧有機化合物之製備

102

C12N9

酶,如連接酶;酶原;其組合物;備製、活化、抑制、分離或純化酶之方法

25

C12N15

突變或基因工程;涉及基因工程之DNARNA、載體,例如質體,或其分離或備製或純化;其宿主之應用

18

由於四階IPC之分類技術主題範圍較為粗略,因此將IPC向下延伸一階來作分類探討。表9列出五、六碳糖生質酒精發酵酵株專利五階IPC分析前五名的技術分類及內容,可以得知C12P7/02C12P7/06C12P7/10C12P7/14C12N15/52此五項分類為五、六碳糖生質酒精發酵酵株專利的重點領域,其中又以C12P7/02羥基有機化合物之備製」專利件數較多。

9. 五、六碳糖生質酒精發酵酵株專利五階IPC分析前五名的技術分類及內容

IPC分類

技術分類意義

專利件數

C12P7/02

羥基有機化合物之備製

93

C12P7/06

含乙醇(非飲料)有機化合物之備製

72

C12P7/10

含纖維素材料之機質有機化合物之備製

38

C12P7/14

多級發酵;多種類型微生物或微生物之重複使用備製有機化合物

22

C12N15/52

編碼酶或酶原之基因

14

5.3 五、六碳糖生質酒精發酵酵株專利重要IPC歷年專利件次分析

藉由IPC歷年專利件次分析,可以瞭解重要專利技術發展之時間趨勢。圖5為五、六碳糖生質酒精發酵酵株專利重要IPC歷年專利件次分析。由圖中可以看出,C12P7/02羥基有機化合物之備製)、C12P7/10(含纖維素材料之機質有機化合物之備製)及C12P7/06(含乙醇(非飲料)有機化合物之備製)三者之技術出現時間相近。

C12P7/14多級發酵;多種類型微生物或微生物之重複使用備製有機化合物)與C12N15/52(編碼酶或酶原之基因)兩項技術出現較晚。C12P7/14件數較少,而C12N15/52又為近10年間才有產出專利,為一發展較晚發展的技術。

5. 重要五階IPC專利技術歷年件次分析圖

5.4 五、六碳糖生質酒精發酵酵株競爭公司重要IPC專利件次分析

藉由競爭競爭公司重要IPC專利件次分析,可瞭解各國(各公司)之技術差異性與研發重點方向。圖6為競爭公司重要IPC專利件次分析,圖中顯示相對研發能力較為優異的公司在重要五階IPC的分布情形。絕大部分的公司的專利皆於C12P7/02羥基有機化合物之備製)與C12P7/06(含乙醇(非飲料)有機化合物之備製)此兩項分類技術上投入較多的資源。而產出最多的Midwest Research Institute將資源平均投入於研發上述兩項分類以及C12N15/52(編碼酶或酶原之基因),佛羅里達大學在技術上的投入和Midwest Research Institute相近。

6. 主要競爭公司重要IPC專利件次分析

6.     五、六碳糖生質酒精發酵酵株專利之UPC分析

6.1 UPC之意義

雖然目前多數國家之發明專利均依據國際專利分類表予以分類,但美國仍舊採行其獨有之「美國專利分類表(United States Patent Classification, UPC)」。主要原因是UPC較為詳細,且修訂頻率較高。相較於IPC69,000多個主目與次目,UPC約有150,000的次類;IPC每五年修訂一次,而UPC則是每兩年修訂一次,更能符合科技進步與時代變遷之需求。

UPC編排體制是以「類」與「次類」兩個層次予以編排,彼此上下相互隸屬,編排架構說明如下:

(1)   (class)

UPC的第一層次為「類」,在每類之前均有說明其主題的「標題」,並以一組13位數的號碼表示該類。在類的範圍中,除部份尚未完全修訂外,每一類均有其定義說明(但新式樣專利的類別則無說明)。此定義可以說明每一類的主題範圍,比簡短的標題更容易清楚表達該類所涵蓋的技術主題範圍,例如類號435的定義說明為「化學;分子生物及微生物」。

(2)   次類(subclass)

類之下再細分為次類,係針對該類主題範疇再予以劃分。次類同樣以號碼表示,且與類的號碼間隔有一條斜線。由於UPC採類與次類的二階分類方式,因此一個完整的UPC分類號應同時包括類與次類的號碼,例如在「435/161」的類號中,435代表「類」,而161代表針對該類細分的「次類」。

10為五、六碳糖生質酒精發酵酵株專利之UPC範例。與IPC分析相同,每一個UPC均對應一個代表該分類的技術內容,UPC分析可對專利技術類別進行分析,包括UPC專利分類分析、UPC專利技術歷年件數分析、與競爭公司分析等。

10. UPC編排架構內容示範

435/161

說明

類之記號、名稱

435:化學;分子生物及微生物

次類之記號、名稱

161:乙醇

435/161」應解讀成「分子生物及微生物發酵而成的乙醇」

6.2 五、六碳糖生質酒精發酵酵株專利之UPC專利分類分析

11列出一階UPC分析前三名的技術分類及內容,可得知435536426此三項分類為五、六碳糖生質酒精發酵酵株專利的重點領域。與IPC相同,每件專利大多並非只有一個UPC一階分類號,因此表11中之專利件次是代表共有多少專利件次屬於該分類,例如US5,000,000號專利其UPC分類為435/161435/170435/320,因此共有3專利件次屬於435分類。

11. 五、六碳糖生質酒精發酵酵株專利主要UPC一階分類及內容

UPC分類

技術分類意義

專利件數

435

化學;分子生物及微生物

104

536

生物組成532-570系列的一部份

15

426

食物或可食用物質;過程,組成,生成物

9

由於一階UPC之分類技術主題範圍較為粗略,因此將UPC向下延伸一階來作分類探討。表12列出二階UPC分析前五名的技術分類及內容,可以得知五項分類為分子生物及微生物發酵而成的酒精、基質包含纖維物質、以生成物、廢棄物、基質含纖維物質的方式產物、多步發酵過程;多種微生物或是可重複利用的微生物、持續發酵等五項為五、六碳糖生質酒精發酵酵株專利的重點領域

7為此五項分類歷年專利件次分析,435/165435/162為較早有專利的兩項分類,且各項技術發展的狀況類似。

12. 五、六碳糖生質酒精發酵酵株專利主要UPC二階分類及內容

UPC分類

技術分類意義

專利件數

435/161

分子生物及微生物發酵而成的酒精

63

435/165

基質包含纖維物質

37

435/163

以生成物、廢棄物、基質含纖維物質的方式產物

35

435/162

多步發酵過程;多種微生物或可重複利用之微生物

33

435/813

持續發酵

18

7. 重要二階UPC專利技術歷年件次分析圖

6.3 五、六碳糖生質酒精發酵酵株專利競爭公司重要UPC專利件次分析

8為競爭公司重要UPC專利件次分析,圖中顯示相對研發能力較為優異的公司在主要二階UPC分類的專利分布情形。 Midwest Research Institute投入於435/161 (分子生物及微生物發酵而成的酒精)及435/165基質包含纖維物質)及435/163以生成物、廢棄物、基質含纖維物質的方式產物)等三項技術的研發,其他公司的情況也類似於這種情況,由圖可看出,五、六碳糖生質酒精發酵酵株的技術發展著重於哪些技術上。

8. 競爭公司重要UPC專利件次分析

7.     五、六碳糖生質酒精發酵酵株之重要引證專利分析

13為五、六碳糖生質酒精發酵酵株專利交互引證前5名之列表,本分析是採四階IPC技術分類中,「交互引證數」的定義為112件專利中引證此篇專利的專利數。例如,US5,000,000的交互引證數為13,即是112件專利中有13件專利引證此件專利。需要強調的是交互引證數的比較並不一定公平,因為越早公告之專利,被引證的機率就越高,但是在客觀上仍可初步瞭解哪些專利是相對重要的。從這5件專利所引伸出之引用關係,可以看出這些專利其關連性可分為五個技術類群。

13. 五、六碳糖生質酒精發酵酵株專利交互引證前五名

專利號

交互引證數

自我引證

被他人引證

專利權人

申請日

公告日

US5000000

13

1

12

University of Florida

1989/5/15

1991/3/19

US4009075

10

0

10

University of Florida.

1975/8/22

1977/2/22

US5028539

10

0

10

University of Florida

1988/11/21

1991/7/2

US4368268

9

1

   8

Purdue Research Foundation

1981/5/15

1983/1/11

US4292406

6

0

6

The United States of America as represented by the United States

1979/9/11

1981/9/29

9為五、六碳糖生質酒精發酵酵株之重要專利引證族譜圖,其中以粉紅色標示出來為上述5重要引證母專利(藍色皆為子專利),這些專利共帶領了4個主要技術類群。

9. 五、六碳糖生質酒精發酵酵株之重要專利引證族譜圖

8.     結論與未來工作

本文完成了五、六碳糖生質酒精發酵酵株技術之美國公告專利檢索與分析,並繪製完成基本管理圖表。五、六碳糖生質酒精發酵酵株技術專利件數前兩名國家為美國與加拿大,合計佔總件數之55.8%(美國佔全體專利件數之43.2%)。重要競爭公司為佛羅里達大學、Midwest Research Institute。以應用領域而言,經由五階IPC專利分類分析可發現五、六碳糖生質酒精發酵酵株專利技術主要為羥基有機化合物之備製及含乙醇(非飲料)有機化合物之備製為主流之專利技術。

參考資料

Abbi, M., Kuhad, R.C. and Singh, A., 1996, “Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae:Fermentation behavior,” Process Biochemistry, Vol. 31, pp. 555-560.

Ogbonna, J. C., Mashima, H. and Tanaka, H., 2001, “Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor,” Bioresource Technology, Vol. 76, pp. 1-8.

Pedro de Oliva Neto, Ferreira, M. A. and Yokoya, F., 2004, “Screening for yeast with antibacterial properties from an ethanol distillery,” Bioresource Technology, Vol. 92, pp. 1-6.

Wang, S., Thomas, K. C., Sosulski, K., Ingledew, W. M. and Sosulski, F. W., 1999, “Grain pearing and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale,” Process Biochemistry, Vol. 34, pp. 421-428.

U. S. Department of Energy, http://www.ott.doe.gov/biofuel

吳文騰,生物產業技術概論,民92,國立清華大學出版社。

附錄A. 重要引證母專利

US-5000000

標題:Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

應用:Indeed, the diversity of fermentation products from bacteria has led to their use as a primary determinant in taxonomy (Krieg and Holt [1984], supra). The subject invention relates to the creation and expression of a novel operon coding for an efficient ethanol-producing system. The novel invention described here can be used in connection with many different hosts. Appropriate expression systems would be used for the particular host involved. Specifically, the subject invention further concerns the discovery that lactose and all of the major sugars (glucose, xylose, arabinose, galactose, and mannose) present in cellulose and hemicellulose could be converted to ethanol by recombinant Escherichia coli containing plasmid-borne genes encoding the enzymes for the ethanol pathway from Zymomonas mobilis.

目標:Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells. The invention described here relates to the use of recombinant DNA technology to elicit the production of specific useful products by a modified host. The invention described here concerns the construction of a unique portable operon for ethanol production which includes both the alcohol dehydrogenase II and pyruvate decarboxylase activities of the ethanologenic pathway.

方法:The unusually high ethanol yields with xylose (over 100% of theoretical) may include ethanol derived from the catabolism of complex nutrients. The BamHI fragment includes the ribosome-binding site, complete sequences for both genes, and a stem-loop terminator distal to adhB. Heterologous promoters were used to express the genes in all constructions except pLOI295 (lac) to minimize potential problems associated with transcriptional regulation. Tetracycline was included at a concentration of 10 mg/liter. Most strains were less tolerant of xylose in initial experiments and comparisons of fermentation were carried out using 8% xylose.

特徵:The invention described here allows the use of recombinant strains of simple organisms for the production of ethanol from under-utilized sources of biomass, such as hemicellulose (xylose, arabinose, etc.), which represents a major portion of wood and inedible plant parts, and whey (lactose), as well as from other biomass sources. This acid production from glucose even under aerobic conditions serves to limit growth in broth and on solid medium, as demonstrated by the increased final cell density in medium supplemented with phosphate buffer. Oxygen transfer is frequently a major limitation during the growth of dense cultures of microorganisms, and it is this limitation which results in acid production and pH drift of the growth medium. Such inherent flexibility results in less stringent process-control requirements, as well as increased yields of recombinant products. This modification coupled with the immediate assaying of alcohol dehydrogenase activity without storage resulted in a much higher specific activity than that previously reported. Expression of the pet operon in E. coli resulted in the production of ethanol as the primary fermentation product during anaerobic growth. Under aerobic conditions, strain TC4 containing pLOI308-10 reached the highest cell density, followed by TC4 containing pLOI308-2, pLOI292, pLOI295 (with some lysis apparent), and pLOI308-5. These effects were reduced by slower agitation and by growth under anaerobic conditions. Strains ATCC 9637 and ATCC 11775 were the most resistant to low pH although all strains grew for at least 2 to 4 doublings at pH 4.0 except ATCC 23227. Strains ATCC 11303 (pLOI297), ATCC 11775 (pLOI297) and ATCC 15224 (pLOI297) contained the highest levels of activity.

US-4009075

標題:Process for making alcohol from cellulosic material using plural ferments

應用:This invention relates to a process of making alcohol from cellulosic material. The process is particularly applicable to the production of ethyl alcohol or ethanol from cellulosic fibers of waste materials. Ethyl alcohol, as produced from cellulosic waste materials in accordance with the present invention, also is useful as a solvent; extractant; antifreeze; intermediate in the synthesis of innumerable organic chemicals, and as an essential ingredient of alcoholic beverages and pharmaceuticals. In the embodiment wherein mineral acid is used in the sterilizer in combination with enzymatic hydrolysis in the later fermentation step, a reduction in the reaction time and the sizes of the tanks or vats is realized over the non-acid hydrolysis embodiment.

目標:The present invention provides such a process.

方法:The process comprises sterilization of the cellulosic material; concurrent digestion and fermentation of the sterilized mixture to produce alcohol using innoculum comprising cellulase enzyme and yeast, vacuum stripping to recover the alcohol, and recovery of innoculum for reuse. The use of non-proteolytic yeasts to ferment sugars in conjunction with vacuum distillation removal of carbon dioxide and ethyl alcohol in the same reaction vat with the enzymatic hydrolysis of the cellulose to sugars, and thereby obtain the following desirable results; a. This non-volatile portion contains yeast, cellulase enzyme and unreacted materials. The process as described in Example I is repeated using a sterilizing cellulosic mixture consisting of 100 grams of dry fiber and 163 grams of water and 5 ml of 10% sulfuric acid. Another improvement feature of the invention comprises concurrent digestion of the cellulase enzyme to form simple sugars, such as glucose, and fermentation of the sugars to produce ethanol with the continuous or intermittent removal of the alcohol to prevent temperature buildup.

特徵:Alcohol forms a useful fuel and may be utilized in admixture with other fuels, for example, gasoline to produce a low cost fuel. Whereas, recent processes have been described for the conversion of cellulose to simple sugars by enzymatic hydrolysis, e.g. U.S. Pat. Nos. 3,642,580 and 3,764,475, no efficient method for producing alcohol from cellulosic materials at relatively low cost as compared with prior known methods has been developed. Cellulose fiber-containing material, such as waste, is subjected to a steam-treatment sufficiently to eliminate unwanted bacterial strains which later may cause unwanted reactions. The use of the higher fiber concentrations reduces tank sizes and aids reaction speeds. Further, steam sterilization is needed to eliminate unwanted bacterial strains, as hereinbefore explained, and the acid treatment causes the cellulose degradation to get started during this treatment step which otherwise would not bring about substantially complete degradation of the cellulose fibers in the same reaction times. The presence of the acid in the sterilization treatment serves to permit a higher solids content of the fibrous slurry mass and this increases the enzyme concentration during the fermentation step which results in increasing the productivity of the fermentation. After twelve hours the effective viscosity of the fibrous slurry is greatly reduced by the action of the enzymes. For example, the process for removing the alcohol can be modified by using ternary azeotropic mixtures which permit the use of lower vacuums (e.g. 300 mm Hg). An important feature of this invention which provides a lower cost process for producing ethanol from cellulosic fibrous material, as compared with prior art known processes, is the provision of steam sterilization with or without the presence of acid in the fibrous mass. The inventive process additionally provides for retention of the enzyme and yeast of the innoculum solution in the form suitable for recycling and reuse in a subsequent batch or with additional cellulosic material subsequently added to the original batch.

US-5028539

標題:Ethanol production using engineered mutant E. coli

應用:The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Indeed, the diversity of fermentation products from bacteria has led to their use as a primary determinant in taxonomy (Krieg and Holt [1984], supra). The subject invention relates to the creation and expression of a novel system coding for the production of ethanol.

目標:The invention described here relates to the use of recombinant DNA technology to elicit the production of specific useful products by a modified host. The invention described here concerns the construction of a unique metabolic system for ethanol production which includes the introduction of the pyruvate decarboxylase activity into cells with constitutive and hyperproducing dehydrogenase gene mutations.

方法:The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources. In addition, strains containing the novel pathway grow to higher cell densities than do the parent organisms under anaerobic conditions with glucose and offer the potential for the increased production of recombinant products in microorganisms while reducing complications associated with acid production. Fermentation products were determined in clarified broth with a Millipore/Waters high-performance liquid chromatograph (Millipore Corp., Bedford, Mass.) equipped with a refractive index monitor and an electronic integrator. High cell densities are also achieved during mixed growth conditions with moderate agitation or stirring of culture vessels in which gas exchange is not restricted. Heterologous promoters were used to express the gene in order to minimize potential problems associated with transcriptional regulation.

特徵:The invention described here allows the use of a recombinant strain of E. coli for the production of ethanol from under- utilized sources of biomass, such as hemicellulose (xylose, arabinose, etc.), which represents a major portion of wood and inedible plant parts, and whey (lactose), as well as from other biomass sources. Oxygen transfer is frequently a major limitation during the growth of dense cultures of microorganisms, and it is this limitation which results in acid production and pH drift of the growth medium. Such inherent flexibility results in less stringent process-control requirements, as well as increased yields of recombinant products. Expression of the pyruvate decarboxylase gene in mutant E. coli resulted in the production of ethanol as the primary fermentation product during anaerobic growth. Although the recombinants reached a higher final cell density, the pH of the broth from the recombinants grown under both anaerobic and aerobic conditions for 24 hr was less acidic than that of the broth from strain TC4 lacking ethanologenic enzymes.

US-4368268

標題:Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant

應用:Moreover, the present invention also relates to inoculating same yeast mutants capable of producing ethanol from glucose containing hydrolyzates and also from D-xylose containing hydrolyzates by fermenting both glucose and xylose, simultaneously.

目標:Accordingly, it is the primary object of the present invention to provide a new process for the production of ethanol from D-xylose using novel xylose-fermenting yeast mutants. It is a further object of the present invention to provide a means for production of ethanol from both D-xylose and other six-carbon sugars, simultaneously. As one embodiment of the present invention, there is provided a process for producing ethanol in a yield of over 80% of theoretical value by aerobic or anaerobic fermentation of D-xylose by xylose fermenting yeast mutants.

方法:A process for obtaining ethanol directly from D-xylose through fermentation of D-xylose by xylose-fermenting yeast mutants. The process provides for obtaining ethanol from hemicellulose hydrolyzates through yeast fermentation of D-xylose to ethanol. Furthermore, the process also provides for obtaining ethanol from a mixture of cellulose and hemicellulose hydrolyzates through yeast fermentation of D-glucose and D-xylose directly and simultaneously to ethanol. The present invention provides a process for producing ethanol from either D-xylose or D-xylose containing hemicellulose hydrolyzates or plant material hydrolyzates by fermentation which comprises inoculating D-xylose-fermenting yeast mutants capable of producing ethanol from D-xylose in over 80% yield. Furthermore, the invention may comprise, consist, and/or consist essentially of the hereinbefore recited materials and steps.

特徵:This together with the results noted in Table 1 confirm that yeasts are not able to effectively ferment (i.e., yields greater than 50% ) D-xylose to ethanol.

US-4292406

標題:Anaerobic thermophilic culture system

應用:This invention relates to a mixed culture system of anaerobic thermophilic microorganisms and more particularly, to a mixed culture of the newly discovered thermophilic glycolytic anaerobe Thermoanaerobacter ethanolicus and Clostridium thermocellum. Further, the invention relates the novel process for producing ethanol from cellulose by fermentation in a nutrient medium with a mixed culture prepared from biologically pure cultures of Thermoanaerobacter ethanolicus and Clostridium thermocellum.

目標:A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. Accordingly, it is an object of the present invention to provide a novel mixed nutrient culture system of microorganisms that produce ethanol under anaerobic thermophilic conditions. It is also an object of the invention to provide a process for producing ethanol by coupling of biologically pure cultures of certain thermophilic anaerobes. It is also an object to couple biologically pure cultures of the newly discovered microorganism T. ethanolicus and the known microorganism C. thermocellum for the efficient fermentation of cellulose to produce ethanol therefrom. Further the novel process of the present invention is a process for producing ethanol directly from cellulose which comprises subjecting said cellulose to the fermentation action of the newly isolated microorganism T. ethanolicus coupled with the microorgansm C. thermocellum in a mixed nutrient culture to form ethanol and recovering said ethanol.

方法:In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions. In accordance with the present invention there is provided a mixed culture system of the newly discovered microorganism T. ethanolicus and the microorganism C. thermocellum. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment said cellulose to produce recoverable quantities of ethanol. This novel fermentation is conducted under anaerobic, thermophilic conditions. The mixed culture system comprising a biologically pure strain of the microorganism Thermoanaerobacter ethanolicus, having the identifying characteristics of ATCC 31550 and a biologically pure strain of the microorganism Clostridium thermocellum, having the identifying characteristics of ATCC 31549, said culture system having the ability to produce ethanol in recoverable quantities upon fermentation in an aqueous nutrient culture containing cellulose material.

特徵:This example shows that coupling C. thermocellum with T. ethanolicus greatly enhances the rate of cellulose breakdown and that the coupling shifts the fermentation toward a significantly greater production of ethanol. The example also indicates that better results are obtained when the pH is controlled throughout the fermentation.